Doxygen Comment Programs

DATE
	Header file:

#pragma
#ifndef H_DateT
#define H_DateT

#include <iostream>
#include <string>
using namespace std;

class DateT
{

	friend ostream& operator << (ostream&, const DateT&);
	friend istream& operator >> (istream&, DateT&);
public:
	/**
	 *@brief default constructor
	 * Initializing the date object with default value
	 */
	DateT();
	/**
	 *@brief specific constructor
	 * Initializing the date object with specific value
	 *@param string d, string m, string y - day, month, year
	 */
	DateT(string d,string m,string y);

	///setters
	
	/**
	 *@brief setting the day of date
	 *@param day = d
	 *@return void
	 */
	void setDay(string d);

	/**
	 *@brief setting the month of date
	 *@param month = m
	 *@return void
	 */
	void setMonth(string m);

	/**
	 *@brief setting the year of date
	 *@param year = y
	 *@return void
	 */
	void setYear(string y);

	/**
	 *@brief setting all the values of date
	 *@param day = d , month = m and year = y
	 *@return void
	 */
	void setDate(string d,string m,string y);

	//getters

	/**
	 *@brief returning the day value of date
	 *@return string
	 */
	string getDay() const;

	/**
	 *@brief returning the month value of date
	 *@return string
	 */
	string getMonth() const;

	/**
	 *@brief returning the year value of date
	 *@return string
	 */
	string getYear() const;

	/**
	 *Will print the details of the date
	 *@return void
	 */
	void printDate() const;

private:
	///data members
	string day;
	string month;
	string year;
};

#endif ///for the above ifndef

	Source File:

#include <iostream>
#include <string>
#include "DateT.h"

using namespace std;

///Default Constructor

DateT::DateT()
{
	day= "04";
	month= "17";
	year= "1998" ;
}

///Specific Constructor
DateT::DateT(string d,string m,string y)
{
	day=d;
	month=m;
	year=y;
}

/*
*Function to set day
*The member variable day is set with d
*Postcondtion day=d;
*/
void DateT::setDay(string d)
{
	day=d;
}
/**
*Function to set month
*The member variable month is set with m
*Postcondtion month=m;
*/
void DateT::setMonth(string m)
{
	month=m;
}
/**
*Function to set year
*The member variable year is set with y
*Postcondtion year=y;
*/
void DateT::setYear(string y)
{
	year=y;
}
/**
*Function to set everything
*/
void DateT::setDate(string d,string m,string y)
{
	day=d;
	month=m;
	year=y;
}
/**
*Function to return the day
*Postcondition : The value of the day is returned
*/
string DateT::getDay() const
{
	return day;

}
/**
*Function to return the month
*Postcondition : The value of the month is returned
*/
string DateT::getMonth() const
{
	return month;
}
/*
*Function to return the year
*Postcondition : The value of the year is returned
*/
string DateT::getYear() const
{
	return year;
}

/**
	 *Will print the details of the time
	 *@return void
	 */
void DateT::printDate() const
{
	cout<<day<<"/"<<month<<"/"<<year;
 }

ostream& operator << (ostream& osObject,const DateT& date1)
{
	osObject<<date1.day
		<<"/"<<date1.month
		<<"/"<<date1.year;
	return osObject;
}
istream& operator >>(istream& isObject,DateT& date1)
{
	isObject>>date1.day>>date1.month>>date1.year;
	return isObject;
}

TIME
	Header file:

#pragma
#ifndef H_TimeT
#define H_TimeT

#include <iostream>
#include <string>
using namespace std;

class TimeT
{
public:
 friend ostream& operator << (ostream& , const TimeT&);
	friend istream& operator >> (istream& , TimeT&);
	
	/**
	 *@brief default constructor
	 * Initializing the time object with default value
	 */
	TimeT();

	/**
	 *@brief specific constructor
	 * Initializing the date object with specific value
	 *@param string d, string m, string y - day, month, year
	 */
	TimeT(string hr,string min, string sec);

	///setters

	/**
	 *@brief setting the hour of time
	 *@param hour = h
	 *@return void
	 */
	void setHour(string hr);

	/**
	 *@brief setting the minute of time
	 *@param minute = m
	 *@return void
	 */
	void setMinute(string min);

	/**
	 *@brief setting the second of time
	 *@param second = sec
	 *@return void
	 */
	void setSecond(string sec);

	/**
	 *@brief setting all the values of time
	 *@param hour = h, minute = min and second sec
	 *@return void
	 */
	void setTime(string hr,string min,string sec);

	///getters

	/**
	 *@brief returning the hour value of time
	 *@return string
	 */
	string getHour() const;

	/**
	 *@brief returning the minute value of time
	 *@return string
	 */
	string getMinute() const;

	/**
	 *@brief returning the second value of time
	 *@return string
	 */
	string getSecond() const;

	/**
	 *Will print the details of the time
	 *@return void
	 */
	void printTime() const;

private:
	///Data members
	string hour;///hour of the share traded
	string minute;///minute of the share traded
	string second; /// second of the share traded

};

#endif ///for the above ifndef

	Source File:

#include <iostream>
#include <string>
#include "TimeT.h"

using namespace std;

	/**
	 *@brief default constructor
	 * Initializing the time object with default value
	 */
TimeT::TimeT()
{
	
	hour = "0";
	minute = "0";
	second = "0";
	
}

/**
	 *@brief default constructor
	 * Initializing the time object with default value
	 */

TimeT::TimeT(string hr,string min, string sec)
{
	
	hour=hr;
	minute=min;
	second = sec;
}

/**
*Function to set hr
*The member variable hr is set with hr
*Postcondtion hr=hr;
*/
void TimeT::setHour(string hr)
{
	hour=hr;
}
/**
*Function to set min
*The member variable min is set with min
*Postcondtion min=min;
*/
void TimeT::setMinute(string min)
{
	minute=min;
}

/**
*Function to set second
*The member variable second is set with sec
*Postcondtion second=sec;
*/
void TimeT::setSecond(string sec)
{
	second = sec;
}
/**Specific Constructor
*@brief Function to set TimeT details
*The member variables are set according to the parameters.
*@param day=d,month=m;year=y;hr=h;min=min;second=sec;
*/
void TimeT::setTime(string hr,string min,string sec)
{
	
	hour=hr;
	minute=min;
	second = sec;
}

/**
*@brief Function to return the hr
*The value of the hr is returned
*/
string TimeT::getHour() const
{
	return hour;
}
/**
*@brief Function to return the min
The value of the min is returned/
string TimeT::getMinute() const
{
	return minute;
}

/**
*@brief Function to return the second
*The value of the second is returned
*/

string TimeT::getSecond() const
{
	return second;
}

/**
*@brief Function to print the TimeT details
*/
void TimeT::printTime() const
{
	
	cout << "Time" ,hour,":",minute, ":", second;
	
}
ostream& operator << (ostream& osObject,const TimeT& time1)
{
	osObject << time1.hour << ":" << time1.minute << ":" << time1.second;
	return osObject;
}
istream& operator >>(istream& isObject,TimeT& time1)
{
	isObject >> time1.hour >> time1.minute >> time1.second;
	return isObject;
}

STOCK
	Header file:

#pragma
#ifndef H_StockT
#define H_StockT
#include <iostream>
#include <string>
#include "DateT.h"
#include "TimeT.h"

using namespace std;
class StockT
{
	friend ostream& operator << (ostream&, const StockT&);
	friend istream& operator >> (istream&, StockT&);
public:

	/**
	 *@brief default constructor
	 * Initializing the stock object with default value
	 */
	StockT();

	/**
	 *@brief specific constructor
	 * Initializing the stock object with specific value
	 *@param double pri, int vol, double val, string d, string m, string y,
	 *string hr, string min, string sec -price, value, volume, day, month, year, hour, minute, second
	 */
	StockT(double pri,int vol,double val,string d,string m,string y,string hr,string min, string sec);

	///setters

	/**
	 *@brief setting the price of stock
	 *@param price = pri
	 *@return void
	 */
	void setPrice(double pri);

	/**
	 *@brief setting the volume of stock
	 *@param volume = vol
	 *@return void
	 */
	void setVolume(int vol);

	/**
	 *@brief setting the value of stock
	 *@param value = val
	 *@return void
	 */
	void setValue(double val);

	/**
	 *@brief setting all the values of stock
	 *@param price = pri, volume = vol, value = val, day = d,
	 *month = m, year = y, hour = h, minute = min and second sec
	 *@return void
	 */
	void setAll(double pri,int vol,double val,string d,string m,string y,string hr,string min,string sec);

	//getters

	/**
	 *@brief returning the price value of stock
	 *@return string
	 */
	double getPrice() const;

	/**
	 *@brief returning the volume value of stock
	 *@return string
	 */
	int getVolume() const;

	/**
	 *@brief returning the value of stock
	 *@return string
	 */
	double getValue()const;

	/**
	 *@brief returning the date value of stock
	 *@return data type
	 */
	DateT getDate() const;

	/**
	 *@brief returning the time value of stock
	 *@return data type
	 */
	TimeT getTime() const;

	/**
	 *Will print the details of the stock
	 *@return void
	 */
	void printStock() const;

private:
	///data members
	DateT dates; ///date traded
	TimeT times; ///time traded
	double price; ///price at which the StockT was traded
	int volume;///volume of the StockT traded
	double value;///dollar of the StockT traded

};
#endif ///for the above ifndef

	Source file:

#include <iostream>
#include <string>
#include "StockT.h"

using namespace std;

/**
	 *@brief default constructor
	 * Initializing the stock object with default value
	 */

StockT::StockT()
{
	price=1.0;
	volume=0;
	value=1.0;

}

/**
	 *@brief specific constructor
	 * Initializing the stock object with specific value
	 *@param double pri, int vol, double val, string d, string m, string y,
	 *string hr, string min, string sec -price, value, volume, day, month, year, hour, minute, second
	 */
StockT::StockT(double pri,int vol,double val,string d,string m,string y,string hr,string min, string sec):dates(d,m,y),times(hr,min,sec)
{
	price=pri;
	volume=vol;
	value=val;
}
/**
* @brief Function to set price of the StockT traded
* The member variable price is set with p.
* @param price=p;
*/
void StockT::setPrice(double pri)
{
	price=pri;
}
/**
*@brief Function to set volume of the StockT traded
* The member variable volume is set with v.
* @param volume=v;
*/
void StockT::setVolume(int vol)
{
	volume=vol;
}
/**
*Function to set value of the StockT traded
* The member variable value is set with v.
* @param price=p;
*/

void StockT::setValue(double val)
{
	value=val;
}
/**
* @brief Function to set StockT details
* The member variables are set according to the parameters.
* @param price=p;volume=v;value=value1;day=d,month=m;year=y;hour=h;minute=min;second=sec;
*/
void StockT::setAll(double pri,int vol,double val,string d,string m,string y,string hr,string min,string sec)
{
	price=pri;
	volume=vol;
	value=val;
	dates.setDate(d,m,y);
	times.setTime(hr,min,sec);
}
/**
*@brief Function to return the price
* @param The value of the price is returned
*/
double StockT::getPrice() const
{
	return price;
}
/*
*@brief Function to return the volume
*Postcondition : The value of the volume is returned
*/
int StockT::getVolume() const
{
	return volume;
}
/**
* @brief Function to return the value
* @param The value of the value is returned
*/
double StockT::getValue() const
{
	return value;
}

/**
* @brief Function to return the dates
* @param The value of the dates is returned
*/
DateT StockT::getDate() const
{
	return dates;
}

/**
*@brief Function to return the times
* @param The value of the times is returned
*/
TimeT StockT::getTime() const
{
	return times;
}

/**
	 *Will print the details of the stock
	 *@return void
	 */
void StockT::printStock() const
{
	dates.printDate();
	times.printTime();
	cout << ", " << price << ", " << volume << ", " << value << endl;
}

/**Function to print the details of the StockT
*/
ostream& operator << (ostream& osObject,const StockT& Stock1)
{
	osObject << Stock1.dates << " " << Stock1.times << " " << Stock1.price << " " << Stock1.volume << " " << Stock1.value;
	return osObject;
}

istream& operator >>(istream& isObject,StockT& Stock1)
{
	isObject >> Stock1.dates >> Stock1.times >> Stock1.price >> Stock1.volume >> Stock1.value;
	return isObject;
}

VECTOR
	Header and Source file:

#ifndef H_VectorT
#define H_VectorT

//--

#include <iostream>
#include <string>

using namespace std;

template <class elemType>

class VectorT
{
public:
	/**
	 *@brief default constructor
	 * Initializing the vector with default value
	 */
	VectorT();

	
	/**
	 *@brief Store the elements to the array according to the parameter
	 *@param elemType& i
	 */
	void push_back(const elemType& i);

	/**
	 *Will print the details of the vector
	 *@return void
	 */
	void print() const;

	/**
	 *To return the arrays
	 *@return int
	 */
	int size() const;

	/**
	 *To return the elements to a certain location
	 *@return int i
	 */
	elemType at(int i) const;

	/**
	 *To see if the array is empty
	 */
	bool isEmpty() const;

	/**
	 *To see if the array is full
	 */
	bool isFull() const;

	
private:
	///data members
	elemType *list;
	int length;
	int maxsize;

};

///Implementation

///To check if the vector is empty
template<class elemType>
bool VectorT<elemType>::isEmpty() const
{
	return (length == 0);
}

///For printing the vector
template<class elemType>
void VectorT<elemType>::print() const
{
	for (int i = 0; i < length; i++)
	{
		cout << list[i] << " ";
		cout << endl;
	}
}

///Default Constructor

template<class elemType>
VectorT<elemType>::VectorT()
{
	maxsize = 4000;
	length = 0;
	list = new elemType[maxsize];
}

///Inserting elements into the array
template<class elemType>
void VectorT<elemType>::push_back(const elemType& i)
{

	list[length] = i;
	length++;
	
}

///Put array into a certain locatin

template<class elemType>
elemType VectorT<elemType>::at(int i) const
{
	if (i < length)
	{
	return list[i];
	}
}

///Return the size of the vector
template<class elemType>
int VectorT<elemType>::size() const
{
	return length;
}

#endif ///for the above ifndef

MAINTEST
	Source file:

[bookmark: _GoBack]
#include "StockT.h"
#include "VectorT.h"
#include <fstream>
#include <string>
#include <iomanip>
#include <iostream>

using namespace std;

///Calling for the void methods
void highestprice();
void lowestprice();
void outfile();

///Calling other class
VectorT<StockT> V1;
StockT S1;
DateT D1;
TimeT T1;

int main()
{
	///Inputting variables
	int option;
	string d1, m1, y1, hr1, min1, sec1, condition;
	string dateTime;
	double price, value;
	int volume;
	ifstream infile;

///----------------Reading the Share-------------------------------
	infile.open("courseofsales.txt"); ///Openning the file

	if(infile.is_open())
	{
	 infile.ignore(500, '\n');
	 infile.ignore(500, '\n');

	while (getline(infile, dateTime, '\n'))
	{
		while (!infile.eof())
		{
		d1 = dateTime.substr(0, 2);
		m1 = dateTime.substr(3, 2);
		y1 = dateTime.substr(6, 4);
		hr1 = dateTime.substr(11, 2);
		min1 = dateTime.substr(14, 2);
		sec1 = dateTime.substr(17, 2);

		infile.ignore(50, '\t'); ///ignoring certain price lines
		infile >> price;
		infile.ignore(50, '\t'); ///ignoring certain volume lines
		infile >> volume;
		infile.ignore(50, '\t'); ///ignoring certain value lienes
		infile >> value;

		getline(infile,condition);
		S1.setAll(price, volume, value, d1,m1,y1,hr1, min1, sec1);
		V1.push_back(S1);
		}
	}
	infile.close(); ///closing the infile
	}

	else
		cout << "Sorry cannot open your file (!!)";

///----------------------Options-------------------
	do{
		cout<< "Please pick a menu options bellow:" << endl;
		cout<< "1: Highest price " << endl;
		cout<< "2: Lowest price " << endl;
		cout<< "3: Output File " << endl;
		cout<< "4: Exit " << endl;
		cout<< "Enter your menu option:";
		cin >> option;
		cout << endl;

		if(option==1)
		{
			
			cout << "This is the highest bid of the day: " << endl;
			highestprice(); ///calls the method for retrieving the highest price
			cout << endl;
		}

		else if (option == 2)
		{
			cout << endl << "This is the lowest bid of the day: " << endl;
			lowestprice(); ///calls the method for retrieving lowest price
			cout << endl;
		}

		else if (option == 3)
		{
			cout << endl << "Kindly check the output file named 'output.csv' (!!) " << endl;
			outfile(); ///calls the method to create output.csv
		}

		else if (option == 4)
			exit(0); ///exit the program
		
		else
		{
			cout << endl << "This is an invalid choice. Enter again. " << endl; //if the number is invalid
		}
		}
		while(option != 1 || option != 2 || option != 3 || option != 4);
		system("PAUSE");
		return 0;
	
}

void highestprice()
{
	///Retrieving highest price
	double highest = V1.at(0).getPrice();
		for (int i = 0; i < V1.size(); i++)
		{
			if (V1.at(i).getPrice() > highest)
			{
				highest = V1.at(i).getPrice();
			}
		}

		for (int j = 0; j < V1.size(); j++)
		{
			if (V1.at(j).getPrice() == highest)
			{
					cout << "Date and Time of transaction: " << V1.at(j).getDate() << V1.at(j).getTime()<< endl;
					cout << "Highest price: " << V1.at(j).getPrice() << endl;
					break;
			}
		}
		cout << endl;
}

void lowestprice()
{
	///Retrieving lowest price
	double lowestprice = V1.at(0).getPrice();
	for (int i = 0; i < V1.size(); i++)
	{
		if ((V1.at(i).getPrice() < lowestprice) && (V1.at(i).getPrice() != 0))
		{
			lowestprice = V1.at(i).getPrice();
		}
	}

	for (int j = 0; j < V1.size(); j++)
	{
		if (V1.at(j).getPrice() == lowestprice)
		{
			cout << "Date and Time of transaction: " << V1.at(j).getDate() << V1.at(j).getTime()<< endl;
			cout << "Lowest price: " << V1.at(j).getPrice() << endl;
			break;
		}
	}
	cout << endl;
}

///-------------------------Creates the output file---------------------------------

void outfile()
{
	ofstream outfile;
	outfile.open("output.csv");

	if (outfile.is_open())
	{
		for (int i = 0; i < V1.size(); i++)
		{
			outfile << V1.at(i).getDate() << "," << setw(5);
			outfile << V1.at(i).getTime() << "," << setw(5);
			outfile << V1.at(i).getPrice() << "," << setw(5);
			outfile << V1.at(i).getVolume() << "," << setw(5);
			outfile << V1.at(i).getValue();
			outfile << '\n';
		}

		outfile.close();
	}

	else
		cout << "Unable to write file";
}

Doxygen Comment Programs

DATE

Header file:

#pragma

#ifndef

H_DateT

#define

H_DateT

#include

<iostream>

#include

<string>

using

namespace

std;

class

DateT

{

friend

ostream&

operator

<< (ostream&,

const

DateT&);

friend

istream&

operator

>> (istream&, DateT&);

public

:

/**

*@brief default constructor

* Initializing the date object with default value

*/

DateT();

/**

*@brief specific constructor

* Initializing the date object with specific value

*@param string d, string m, string y

-

day, month, year

*/

DateT(string d,string m,string y);

///setters

/**

*@brief setting the day of date

*@p

aram day = d

*@return void

*/

void

setDay(string d);

/**

*@brief setting the month of date

*@param month = m

*@return void

*/

void

setMonth(string m);

/**

*@brief setting the year of date

*@param year = y

*@return void

*/

void

setYear(string y);

/**

*@brief setting all the values of date

Doxygen Comment Programs DATE

Header file:

 #pragma #ifndef H_DateT #define H_DateT #include <iostream> #include <string> using namespace std; class DateT { friend ostream& operator << (ostream&, const DateT&); friend istream& operator >> (istream&, DateT&); public : /** *@brief default constructor * Initializing the date object with default value */ DateT(); /** *@brief specific constructor * Initializing the date object with specific value *@param string d, string m, string y - day, month, year */ DateT(string d,string m,string y); ///setters /** *@brief setting the day of date *@p aram day = d *@return void */ void setDay(string d); /** *@brief setting the month of date *@param month = m *@return void */ void setMonth(string m); /** *@brief setting the year of date *@param year = y *@return void */ void setYear(string y); /** *@brief setting all the values of date

